Opportunities for enhancing MLCommons efforts while leveraging insights from educational MLCommons earthquake benchmarks efforts

Author:

von Laszewski Gregor,Fleischer J. P.,Knuuti Robert,Fox Geoffrey C.,Kolessar Jake,Butler Thomas S.,Fox Judy

Abstract

MLCommons is an effort to develop and improve the artificial intelligence (AI) ecosystem through benchmarks, public data sets, and research. It consists of members from start-ups, leading companies, academics, and non-profits from around the world. The goal is to make machine learning better for everyone. In order to increase participation by others, educational institutions provide valuable opportunities for engagement. In this article, we identify numerous insights obtained from different viewpoints as part of efforts to utilize high-performance computing (HPC) big data systems in existing education while developing and conducting science benchmarks for earthquake prediction. As this activity was conducted across multiple educational efforts, we project if and how it is possible to make such efforts available on a wider scale. This includes the integration of sophisticated benchmarks into courses and research activities at universities, exposing the students and researchers to topics that are otherwise typically not sufficiently covered in current course curricula as we witnessed from our practical experience across multiple organizations. As such, we have outlined the many lessons we learned throughout these efforts, culminating in the need for benchmark carpentry for scientists using advanced computational resources. The article also presents the analysis of an earthquake prediction code benchmark while focusing on the accuracy of the results and not only on the runtime; notedly, this benchmark was created as a result of our lessons learned. Energy traces were produced throughout these benchmarks, which are vital to analyzing the power expenditure within HPC environments. Additionally, one of the insights is that in the short time of the project with limited student availability, the activity was only possible by utilizing a benchmark runtime pipeline while developing and using software to generate jobs from the permutation of hyperparameters automatically. It integrates a templated job management framework for executing tasks and experiments based on hyperparameters while leveraging hybrid compute resources available at different institutions. The software is part of a collection called cloudmesh with its newly developed components, cloudmesh-ee (experiment executor) and cloudmesh-cc (compute coordinator).

Publisher

Frontiers Media SA

Reference41 articles.

1. “Hyperparameter search in machine learning,” ClaesenM. De MoorB. MIC 2015: The XI Metaheuristics International Conference in Agadir2015

2. TOP 500 supercomputer sites;Dongarra;Supercomputer,1997

3. “The Green500: a ranking of the most energy-efficient supercomputers,”;Feng,2007

4. “Systems software and technology,”;Fincher,2019

5. Time series analysis of cryptocurrency prices using long short-term memory;Fleischer;Algorithms,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3