Space-point calibration of the ALICE TPC with track residuals

Author:

Schmidt Marten Ole

Abstract

In the LHC Run 3, starting in 2021, the upgraded Time Projection Chamber (TPC) of the ALICE experiment will record minimum bias Pb–Pb collisions in a continuous readout mode at an interaction rate up to 50 kHz. This corresponds to typically 4-5 overlapping collisions during the electron drift time in the detector. Despite careful tuning of the new quadruple GEM-based readout chambers, which fulfill the design requirement of an ion backflow below 1%, these conditions will lead to space-charge distortions of several centimeters that fluctuate in time. They will be corrected via a calibration procedure that uses the information of the Inner Tracking System (ITS), which is located inside, and the Transition Radiation Detector (TRD) and Time-Of-Flight system (TOF), located around the TPC, respectively. By using such a procedure the intrinsic track resolution of the TPC of a few hundred micrometers can be restored. The required online tracking algorithm for the TRD, which is based on a Kalman filter, is presented. The procedure matches extrapolated ITS-TPC tracks to TRD space-points utilizing GPUs. Subsequently these global tracks are refitted neglecting the TPC information. The residuals of the TPC clusters to the interpolation of the refitted tracks are used to create a map of spacecharge distortions. Regular updates of the map compensate for changes in the TPC conditions. The map is applied in the final reconstruction of the data. First performance results of the tracking algorithm will be shown.

Publisher

EDP Sciences

Reference8 articles.

1. Appelshäuser H. et al., “Space-charge distortion measurements and their calibration in the ALICE TPC”, in preparation

2. ALICE Collaboration, “Technical Design Report for the Upgrade of the ALICE Time Projection Chamber”, CERN-LHCC-2013-020 (2013)

3. Buncic P. et al. [ALICE Collaboration], “Technical Design Report for the Upgrade of the Online-Offline Computing System”, CERN-LHCC-2015-006 (2015)

4. ALICE Collaboration, “Technical Design Report for the Upgrade of the ALICE Read-out & Trigger System”, CERN-LHCC-2013-019 (2014)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3