Deep neural network techniques in the calibration of space-charge distortion fluctuations for the ALICE TPC

Author:

Gorbunov Sergey,Hellbär Ernst,Innocenti Gian Michele,Ivanov Marian,Kabus Maja,Kleiner Matthias,Riaz Haris,Rohr David,Sadikin Rifki,Schweda Kai,Sekihata Daiki,Shahoyan Ruben,Völkel Benedikt,Wiechula Jens,Zampolli Chiara,Appelshäuser Harald,Büsching Henner,Graczykowski Łukasz,Grosse-Oetringhaus Jan Fiete,Hristov Peter,Gunji Taku,Masciocchi Silvia

Abstract

The Time Projection Chamber (TPC) of the ALICE experiment at the CERN LHC was upgraded for Run 3 and Run 4. Readout chambers based on Gas Electron Multiplier (GEM) technology and a new readout scheme allow continuous data taking at the highest interaction rates expected in Pb-Pb collisions. Due to the absence of a gating grid system, a significant amount of ions created in the multiplication region is expected to enter the TPC drift volume and distort the uniform electric field that guides the electrons to the readout pads. Analytical calculations were considered to correct for space-charge distortion fluctuations but they proved to be too slow for the calibration and reconstruction workflow in Run 3. In this paper, we discuss a novel strategy developed by the ALICE Collaboration to perform distortion-fluctuation corrections with machine learning and convolutional neural network techniques. The results of preliminary studies are shown and the prospects for further development and optimization are also discussed.

Publisher

EDP Sciences

Reference15 articles.

1. Alme J. et al., Nucl. Instrum. Meth. A 622, 316–367 (2010).

2. Abelev B. et al., ALICE Collaboration, CERN-LHCC-2013-020.

3. Adolfsson J. et al., ALICE TPC Collaboration, 2021 JINST 16 P03022

4. ALICE O2 Project, https://alice-o2-project.web.cern.ch (2021), accessed: 2021-02-10.

5. Deisting A., Garabatos C. and Szabo A., Nucl. Instrum. Meth. A 904, 1–8 (2018).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3