Advances in developing deep neural networks for finding primary vertices in proton-proton collisions at the LHC

Author:

Akar Simon,Elashri Mohamed,Garg Rocky Bala,Kauffman Elliott,Peters Michael,Schreiner Henry,Sokoloff Michael,Tepe William,Tompkins Lauren

Abstract

We are studying the use of deep neural networks (DNNs) to identify and locate primary vertices (PVs) in proton-proton collisions at the LHC. Earlier work focused on finding primary vertices in simulated LHCb data using a hybrid approach that started with kernel density estimators (KDEs) derived heuristically from the ensemble of charged track parameters and predicted “target histogram” proxies, from which the actual PV positions are extracted. We have recently demonstrated that using a UNet architecture performs indistinguishably from a “flat” convolutional neural network model. We have developed an “end-to-end” tracks-to-hist DNN that predicts target histograms directly from track parameters using simulated LHCb data that provides better performance (a lower false positive rate for the same high efficiency) than the best KDE-tohists model studied. This DNN also provides better efficiency than the default heuristic algorithm for the same low false positive rate. “Quantization” of this model, using FP16 rather than FP32 arithmetic, degrades its performance minimally. Reducing the number of UNet channels degrades performance more substantially. We have demonstrated that the KDE-to-hists algorithm developed for LHCb data can be adapted to ATLAS and ACTS data using two variations of the UNet architecture. Within ATLAS/ACTS, these algorithms have been validated against the standard vertex finder algorithm. Both variations produce PVfinding efficiencies similar to that of the standard algorithm and vertex-vertex separation resolutions that are significantly better.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3