Allen: A High-Level Trigger on GPUs for LHCb

Author:

Aaij R.,Albrecht J.,Belous M.,Billoir P.,Boettcher T.,Brea Rodríguez A.,vom Bruch D.ORCID,Cámpora Pérez D. H.,Casais Vidal A.,Craik D. C.,Fernandez Declara P.,Funke L.,Gligorov V. V.,Jashal B.,Kazeev N.,Martínez Santos D.,Pisani F.,Pliushchenko D.,Popov S.,Quagliani R.,Rangel M.,Reiss F.,Sánchez Mayordomo C.,Schwemmer R.,Sokoloff M.,Stevens H.,Ustyuzhanin A.,Vilasís Cardona X.,Williams M.

Abstract

AbstractWe describe a fully GPU-based implementation of the first level trigger for the upgrade of the LHCb detector, due to start data taking in 2021. We demonstrate that our implementation, named Allen, can process the 40 Tbit/s data rate of the upgraded LHCb detector and perform a wide variety of pattern recognition tasks. These include finding the trajectories of charged particles, finding proton–proton collision points, identifying particles as hadrons or muons, and finding the displaced decay vertices of long-lived particles. We further demonstrate that Allen can be implemented in around 500 scientific or consumer GPU cards, that it is not I/O bound, and can be operated at the full LHC collision rate of 30 MHz. Allen is the first complete high-throughput GPU trigger proposed for a HEP experiment.

Funder

European Research Council

Deutsche Forschungsgemeinschaft

National Science Foundation

Russian Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics,Computer Science (miscellaneous),Software

Reference25 articles.

1. LHCb collaboration, Aaij R, et al. (2015) LHCb detector performance. Int J Mod Phys A30: 1530022

2. Fitzpatrick C, Gligorov VV (2014) Anatomy of an upgrade event in the upgrade era, and implications for the lhcb trigger. Technical report LHCb-PUB-2014-027. CERN-LHCb-PUB-2014-027, CERN, Geneva

3. Aaij R et al (2016) Tesla: an application for real-time data analysis in high energy physics. Comput Phys Commun 208:35

4. Aaij R et al (2019) A comprehensive real-time analysis model at the LHCb experiment. JINST 14:P04006

5. LHCb Collaboration (2018) Computing Model of the Upgrade LHCb experiment. Technical report. CERN-LHCC-2018-014. LHCB-TDR-018, CERN, Geneva

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Portable Acceleration of CMS Computing Workflows with Coprocessors as a Service;Computing and Software for Big Science;2024-09-04

2. LHCb potential to discover long-lived new physics particles with lifetimes above 100 ps;The European Physical Journal C;2024-06-12

3. The LHCb Upgrade I;Journal of Instrumentation;2024-05-01

4. FunTuple: A New N-tuple Component for Offline Data Processing at the LHCb Experiment;Computing and Software for Big Science;2024-02-24

5. Artificial Intelligence for the Electron Ion Collider (AI4EIC);Computing and Software for Big Science;2024-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3