First in-core gamma spectroscopy experiments in a zero power reactor

Author:

Pakari Oskari,Lamirand Vincent,Mager Tom,Laureau Axel,Frajtag Pavel,Pautz Andreas

Abstract

Gamma rays in nuclear reactors, arising either from nuclear reactions or decay processes, significantly contribute to the heating and dose of the reactor components. Zero power research reactors offer the possibility to measure gamma rays in a purely neutronic environment, allowing for validation experiments of dose estimates, computed spectra, and prompt to delayed gamma ratios. The resulting data can contribute to models, code validation and photo atomic/nuclear data evaluation. To date, most experiments have relied on flux measurements using TLDs, ionization chambers, or spectrometers set in low flux areas. The CROCUS reactor allows for flexible detector placement in and around the core, and has recently been outfitted with gamma detection capabilities to fulfill the need for in-core gamma spectroscopy, as opposed to flux. In this paper we report on the experiments and accompanying simulations of gamma spectrum measurements inside a zero power reactor core, CROCUS. It is a two-zone, uranium-fueled light water moderated facility operated by the Laboratory for Reactor Physics and Systems Behaviour (LRS) at the Swiss Federal Institute of Technology Lausanne (EPFL). Herein we also introduce, in detail, the new LEAF system: A Large Energy-resolving detection Array for Fission gammas. It consists of an array of four detectors – two large ø 127 254 mm Bismuth Germanate (BGO) and two smaller ø 12 50 mm Cerium Bromide (CeBr3) scintillators. We describe the calibration and characterization of LEAF followed by first in-core measurements of gamma ray spectra in a zero power reactor at different sub-critical and critical states, and different locations. The spectra are then compared to code results, namely MCNP6.2 pulse height tallies. We were able to distinguish prompt processes and delayed peaks from decay databases. We present thus experimental data from hitherto inaccessible core regions. We provide the data as validation means for codes that attempt to model these processes for energies up to 10 MeV. We finally draw conclusions and discuss the future uses of LEAF. The results indicate the possibility of isotope tracking and burn-up validation.

Publisher

EDP Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3