Gamma-ray Spectroscopy in Low-Power Nuclear Research Reactors

Author:

Pakari Oskari V.123ORCID,Lucas Andrew1,Darby Flynn B.1ORCID,Lamirand Vincent P.23,Maurer Tessa1,Bisbee Matthew G.4,Cao Lei R.4,Pautz Andreas23,Pozzi Sara A.1

Affiliation:

1. Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48105, USA

2. Department of Radiation Safety and Security, Paul Scherrer Institute, 5232 Villigen, Switzerland

3. Laboratory for Reactor Physics and Systems Behavior, Ecole Polytechnique Federale de Lausanne, LRS EPFL, 1015 Lausanne, Switzerland

4. The Ohio State University Nuclear Reactor Laboratory, Columbus, OH 43212, USA

Abstract

Gamma-ray spectroscopy is an effective technique for radioactive material characterization, routine inventory verification, nuclear safeguards, health physics, and source search scenarios. Gamma-ray spectrometers typically cannot be operated in the immediate vicinity of nuclear reactors due to their high flux fields and their resulting inability to resolve individual pulses. Low-power reactor facilities offer the possibility to study reactor gamma-ray fields, a domain of experiments hitherto poorly explored. In this work, we present gamma-ray spectroscopy experiments performed with various detectors in two reactors: The EPFL zero-power research reactor CROCUS, and the neutron beam facility at the Ohio State University Research Reactor (OSURR). We employed inorganic scintillators (CeBr3), organic scintillators (trans-stilbene and organic glass), and high-purity germanium semiconductors (HPGe) to cover a range of typical—and new—instruments used in gamma-ray spectroscopy. The aim of this study is to provide a guideline for reactor users regarding detector performance, observed responses, and therefore available information in the reactor photon fields up to 2 MeV. The results indicate several future prospects, such as the online (at criticality) monitoring of fission products (like Xe, I, and La), dual-particle sensitive experiments, and code validation opportunities.

Funder

Consortium for Monitoring, Technology, and Verification under Department of Energy National Nuclear Security Administration

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3