Shock deceleration in interplanetary coronal mass ejections (ICMEs) beyond Mercury’s orbit until one AU

Author:

Grison BenjaminORCID,Souček Jan,Krupar Vratislav,Píša David,Santolík Ondrej,Taubenschuss Ulrich,Nĕmec František

Abstract

The CDPP propagation tool is used to propagate interplanetary coronal mass ejections (ICMEs) observed at Mercury by MESSENGER to various targets in the inner solar system (VEX, ACE, STEREO-A and B). The deceleration of ICME shock fronts between the orbit of Mercury and 1 AU is studied on the basis of a large dataset. We focus on the interplanetary medium far from the solor corona, to avoid the region where ICME propagation modifications in velocity and direction are the most drastic. Starting with a catalog of 61 ICMEs recorded by MESSENGER, the propagation tool predicts 36 ICME impacts with targets. ICME in situ signatures are investigated close to predicted encounter times based on velocities estimated at MESSENGER and on the default propagation tool velocity (500 km s−1). ICMEs are observed at the targets in 26 cases and interplanetary shocks (not followed by magnetic ejecta) in two cases. Comparing transit velocities between the Sun and MESSENGER ($ {\bar{v}}_{\mathrm{SunMess}}$) and between MESSENGER and the targets ($ {\bar{v}}_{\mathrm{MessTar}}$), we find an average deceleration of 170 km s−1 (28 cases). Comparing $ {\bar{v}}_{\mathrm{MessTar}}$ to the velocities at the targets (v Tar), average ICME deceleration is about 160 km s−1 (13 cases). Our results show that the ICME shock deceleration is significant beyond Mercury’s orbit. ICME shock arrival times are predicted with an average accuracy of about six hours with a standard deviation of eleven hours. Focusing on two ICMEs detected first at MESSENGER and later on by two targets illustrates our results and the variability in ICME propagations. The shock velocity of an ICME observed at MESSENGER, then at VEX and finally at STEREO-B decreases all the way. Predicting arrivals of potentially effective ICMEs is an important space weather issue. The CDPP propagation tool, in association with in situ measurements between the Sun and the Earth, can permit to update alert status of such arrivals.

Funder

Grantová Agentura České Republiky

Publisher

EDP Sciences

Subject

Space and Planetary Science,Atmospheric Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3