Over-expansion of a coronal mass ejection generates sub-Alfvénic plasma conditions in the solar wind at Earth

Author:

Chané E.,Schmieder B.,Dasso S.,Verbeke C.,Grison B.,Démoulin P.,Poedts S.

Abstract

Context. From May 24–25, 2002, four spacecraft located in the solar wind at about 1 astronomical unit (au) measured plasma densities one to two orders of magnitude lower than usual. The density was so low that the flow became sub-Alfvénic for four hours, and the Alfvén Mach number was as low as 0.4. Consequently, the Earth lost its bow shock, and two long Alfvén wings were generated. Aims. This is one of the lowest density events ever recorded in the solar wind at 1 au, and the least documented one. Our goal is to understand what caused the very low density. Methods. Large Angle and Spectrometric Coronagraph (LASCO) and in situ data were used to identify whether something unusual occurred that could have generated such low densities Results. The very low density was recorded inside a large interplanetary coronal mass ejection (ICME), which displayed a long, linearly declining velocity profile, typical of expanding ICMEs. We deduce a normalised radial expansion rate of 1.6. Such a strong expansion, occurring over a long period of time, implies a radial size expansion growing with the distance from the Sun to the power 1.6. This can explain a two-orders-of-magnitude drop in plasma density. Data from LASCO and the Advanced Composition Explorer show that this over-expanding ICME was travelling in the wake of a previous ICME. Conclusions. The very low densities measured in the solar wind in May 2002 were caused by the over-expansion of a large ICME. This over-expansion was made possible because the ICME was travelling in a low-density and high-velocity environment present in the wake of another ICME coming from a nearby region on the Sun and ejected only three hours previously. Such conditions are very unusual, which explains why such very low densities are almost never observed.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3