Uncertainty in tuning evaluation with low-register complex tones of orchestra instruments

Author:

Jaatinen JussiORCID,Pätynen JukkaORCID,Lokki TapioORCID

Abstract

The relationship between perceived pitch and harmonic spectrum in complex tones is ambiguous. In this study, 31 professional orchestra musicians participated in a listening experiment where they adjusted the pitch of complex low-register successively presented tones to unison. Tones ranged from A0 to A2 (27.6–110 Hz) and were derived from acoustic instrument samples at three different dynamic levels. Four orchestra instruments were chosen as sources of the stimuli; double bass, bass tuba, contrabassoon, and contrabass clarinet. In addition, a sawtooth tone with 13 harmonics was included as a synthetic reference stimulus. The deviation of subjects’ tuning adjustments from unison tuning was greatest for the lowest tones, but remained unexpectedly high also for higher tones, even though all participants had long experience in accurate tuning. Preceding studies have proposed spectral centroid and Terhardt’s virtual pitch theory as useful predictors of the influence of the envelope of a harmonic spectrum on the perceived pitch. However, neither of these concepts were supported by our results. According to the principal component analysis of spectral differences between the presented tone pairs, the contrabass clarinet-type spectrum, where every second harmonic is attenuated, lowered the perceived pitch of a tone compared with tones with the same fundamental frequency but a different spectral envelope. In summary, the pitches of the stimuli were perceived as undefined and highly dependent on the listener, spectrum, and dynamic level. Despite their high professional level, the subjects did not perceive a common, unambiguous pitch of any of the stimuli. The contrabass clarinet-type spectrum lowered the perceived pitch.

Funder

Academy of Finland

Alfred Kordelinin Säätiö

Niilo Helander Foundation

Open access funded by Helsinki University Library

Publisher

EDP Sciences

Subject

Electrical and Electronic Engineering,Speech and Hearing,Computer Science Applications,Acoustics and Ultrasonics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3