Perceptual evaluation of an ambisonic auralization system of measured 3D acoustics

Author:

Fargeot SimonORCID,Vidal Adrien,Aramaki MitsukoORCID,Kronland-Martinet RichardORCID

Abstract

This paper presents a perceptual experiment aimed at assessing the spatial quality of acoustic environment rendering using a 4th order ambisonic auralization system. A novel test protocol is developed for this purpose, based on comparing the perceived spatial attributes of sound sources in both real (in-situ) and virtual listening conditions (loudspeaker-based ambisonic auralization of measured SRIRs). The perceptual evaluation is conducted using a specific reporting method combined with a virtual reality interface, enabling simultaneous assessment of perceived distance, angular position, and apparent width of sound sources. The test is conducted in three “office like” rooms, varying in reverberation properties and size. The results highlight differences in spatial perception between (a) real rooms and (b) their reproduction through the auralization system. Overall, localization performance is worse in auralized conditions than in real conditions, as evidenced by a clear increase in localization errors in azimuth and elevation, along with an increase in reported source width. This study also reveals that the spatial accuracy of the auralization depends on the rooms being auralized.

Publisher

EDP Sciences

Subject

Electrical and Electronic Engineering,Speech and Hearing,Computer Science Applications,Acoustics and Ultrasonics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3