Abstract
The advent of electrified propulsion systems for civil aircraft promises not only notable reductions of CO2 and NOx emissions, but also of perceived noise. In an attempt to estimate the noise reduction potential of fully electric aircraft engines, the current study compares the noise generated by classical turboprop and turbofan engines with noise spectra calculated for electrified engines. The calculation is based on published far-field sound pressure level spectra at different noise certification points, which are then modified to account for the absence of combustion-related noise sources. In addition to the overall sound pressure level, changes to the effective perceived noise level are also taken into account. The results clearly show that the electrification of the engine alone will not lead to the notable noise reductions that are required in order to achieve the goals for future aviation set by the European Commission. Instead, continued research is necessary to further reduce noise sources that will continue to be present in novel electrified aircraft systems, such as fan noise and airframe noise.
Subject
Electrical and Electronic Engineering,Speech and Hearing,Computer Science Applications,Acoustics and Ultrasonics
Reference55 articles.
1. Enghardt L., Geyer T.F.: Lärmminderungspotential elektrifizierter Luftfahrtantriebe. In: DAGA 2022 – 48. Jahrestagung für Akustik, DEGA, Paper 0476. 2022, pp. 572–575.
2. European Commission, Directorate-General for Mobility and Transport, Directorate-General for Research and Innovation: Flightpath 2050 – Europe's vision for aviation – maintaining global leadership and serving society's needs. Publications Office, 2012. https://data.europa.eu/doi/10.2777/15458.
3. Considerations for Reducing Aviation’s CO2 with Aircraft Electric Propulsion
4. Technical and environmental assessment of all-electric 180-passenger commercial aircraft
5. More Electric Aircraft: Review, Challenges, and Opportunities for Commercial Transport Aircraft