Abstract
In this paper, a stochastic solid transportation problem (SSTP) is constructed where the demand of the item at the destinations are randomly distributed. Such SSTP is formulated with profit maximization form containing selling revenue, transportation cost and holding/shortage cost of the item. The proposed SSTP is framed as a nonlinear transportation problem which is optimized through Karush–Kuhn–Tucker (KKT) conditions of the Lagrangian function. The primary model is bifurcated into three different models for continuous and discrete demand patterns. The concavity of the objective functions is also presented here very carefully. Finally, a numerical example is illustrated to stabilize the models.
Subject
Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献