Low frequency stall modes of a radial vaned diffuser flow

Author:

Moënne-Loccoz Victor,Trébinjac Isabelle,Poujol Nicolas,Duquesne Pierre

Abstract

The present paper aims at providing an experimental analysis of the path to surge of a centrifugal compressor stage designed and built by Safran Helicopter Engines. Depending on the rotation speed of the compressor, two distinct flow patterns are observed in the radial diffuser at stabilized operating points near the surge, an asymmetric and a symmetric pattern. At medium rotation speed, the alternate pattern consisting of a two-channel pattern in the radial diffuser develops. One passage over two is stalled, the adjacent passage is free and this pattern replicates over the whole circumference while pulsing at a frequency of roughly 12 Hz which is close to the Helmholtz frequency of the test rig. By lowering the rotation speed, the two-channel pattern fades away and gives way to a periodical behavior of the radial diffuser passages called symmetric mode. The flow in each channel is identical presenting a stalled behavior pulsating in phase at a higher frequency of roughly 42 Hz. The two 12 Hz and 42 Hz modes are described and their existences are imputed to a lock-in of the natural frequencies of the instabilities with the acoustic modes of the test rig.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsteady Pre-Stall Behavior in a Centrifugal Compressor With Vaned Diffuser;Journal of Turbomachinery;2023-12-15

2. Inlet Gap Influence on Low-Frequency Flow Unsteadiness in a Centrifugal Fan;Aerospace;2022-12-19

3. Unsteady Analysis of a Pulsating Alternate Flow Pattern in a Radial Vaned Diffuser;International Journal of Turbomachinery, Propulsion and Power;2022-07-14

4. Detection and Analysis of an Alternate Flow Pattern in a Radial Vaned Diffuser;International Journal of Turbomachinery, Propulsion and Power;2020-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3