Unsteady Analysis of a Pulsating Alternate Flow Pattern in a Radial Vaned Diffuser

Author:

Poujol Nicolas,Buisson Martin,Duquesne PierreORCID,Trébinjac Isabelle

Abstract

In centrifugal compressors, Mild Surge (MS) leads to unstable operation. Previous experimental work on a centrifugal compressor designed and built by Safran Helicopter Engines (SafranHE) showed that MS corresponds to the pulsation of an alternate stall pattern at the Helmholtz frequency of the test rig on two channels in the radial diffuser. The present contribution experimentally investigates the impact of the Inlet Guide Vane (IGV) stagger angle on this alternate flow and numerically studies the topology of this pulsating alternate flow. The experimental investigation is performed with unsteady pressure sensors, and shows that the IGV stagger angle only impacts the pulsation frequency of the alternate flow pattern. This change is explained by the dependence of the Helmholtz frequency on the compressor inlet section. The topological analysis of the average flow field, computed from wall-resolved Unsteady Reynolds-Averaged Navier–Stokes (URANS) simulations, demonstrates that the saddle point (major critical point) in the corner hub/suction side of the stalled blade migrates upstream while staying in the corner if the mass flow rate decreases. One main blade over two is stalled on both sides because the flow originating from this corner separation circumvents the trailing edge and migrates upstream along the pressure side. In the simulation, the pulsation of the alternate stall is coupled with the reflection of acoustic waves on the inlet and outlet planes, regarded as an environmental effect.

Funder

Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme

Publisher

MDPI AG

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3