Experimental and numerical investigation of geometric effect on cavitation flow through orifice

Author:

Davoudi Mohammad Reza,Mahdi MiralamORCID

Abstract

Due to the set of factors and conditions, the stream pressure through the orifice decreases, which can lead to the occurrence of the cavitation phenomenon. The most important factor in this regard is the geometry of orifice. In the first part of this study, the flow through two types of single-hole orifice and a multi-hole orifice were experimentally studied. The results showed that the single hole orifice with a two-sided sloped edge caused less pressure drop, which in order to control the cavitation phenomenon is more efficient compared to the single-hole and multi-hole orifices with one-sided sloped edges and the same equal diameter ratio. Additionally, all experiments were simulated in the second part of this research using finite volume methods. Considering the complexity of the problem, several numerical solutions were investigated to approach the experimental results. Finally, it was determined that the type of gridding, turbulence method, and cavitation model have a great influence on the accuracy of the obtained numerical results.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3