Simulations of geometry effects and loss mechanisms affecting the photon collection in photovoltaic fluorescent collectors

Author:

Prönneke L.,Gläser G. C.,Rau U.

Abstract

Monte-Carlo simulations analyze the photon collection in photovoltaic systems with fluorescent collectors. We compare two collector geometries: the classical setup with solar cells mounted at each collector side and solar cells covering the collector back surface. For small ratios of collector length and thickness, the collection probability of photons is equally high in systems with solar cells mounted on the sides or at the bottom of the collector. We apply a photonic band stop filter acting as an energy selective filter which prevents photons emitted by the dye from leaving the collector. We find that the application of such a filter allows covering only 1% of the collector side or bottom area with solar cells. Furthermore, we compare ideal systems in their radiative limits to systems with included loss mechanisms in the dye, at the mirror, or the photonic filter. Examining loss mechanisms in photovoltaic systems with fluorescent collectors enables us to estimate quality limitations of the used materials and components.

Publisher

EDP Sciences

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3