Loss analysis in luminescent sheet concentrators: from ideal to real system

Author:

Proise Florian,Joudrier Anne-Laure,Pelouard Jean-Luc,Guillemoles Jean-François

Abstract

Thermodynamic limits of luminescent sheet concentrators (LSC) are three orders of magnitude higher than record ones made up to now. This paper aims at understanding why there is such a gap and what is the link between ideal and real LSC. Computational modeling enables to evaluate separately the different loss mechanisms, to determine their respective weight, and to correlate them to accessible physical parameters, such as geometrical ratio, photoluminescence quantum yield, etc. From an ideal system, the different parameters have been degraded to obtain a real system and the performances of each system have been simulated. The high interdependency of different loss mechanisms has also been studied in several cases. In a second part, more realistic cases are addressed to show how performances is impacted by non-idealities and where does the principal limitations come from. Practically achievable efficiencies are suggested, based on state-of-the-art technologies and material properties. Finally, promising directions for the search of better systems are proposed.

Publisher

EDP Sciences

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3