Advanced UV-fluorescence image analysis for early detection of PV-power degradation

Author:

Neumaier LukasORCID,Eder Gabriele C.,Voronko Yuliya,Berger Karl A.,Újvári Gusztáv,Knöbl Karl

Abstract

Reliability and durability of photovoltaic modules are a key factor for the development of emerging PV markets worldwide. Reliability is directly dependent on the chemical and physical stability of the polymeric encapsulation materials. One method capable of detecting ageing effects of the polymeric encapsulant directly on-site is UltraViolet Fluorescence (UVF) imaging. This work deals with advanced imaging analysis of UVF images and the subsequent correlation to electrical parameters of PV modules, which were exposed to climate-specific, long-term, accelerated aging procedures. For establishing a correlation, a so called UVF area ratio was established, resulting from the typical fluorescence patterns of the encapsulant material, which arise due to stress impact (e.g., water vapor ingress, elevated temperature, irradiation) and aging/degradation processes. Results of the data analysis show a clear correlation of the UVF area ratios and the electrical parameters with increasing aging time. In particular, the relationship between power and series resistance could be confirmed by extensive long-term test series with different climate-specific aging processes. Assuming the same type of polymeric encapsulation and backsheet and a comparable climate, determining the UVF area ratio can be used to estimate the service life and electrical power dissipation of each module installed in a PV array.

Funder

FFG - Austrian Research Promotion Agency

Publisher

EDP Sciences

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3