Quantifying the influence of encapsulant and backsheet composition on PV‐power and electrical degradation

Author:

Brune Barbara1,Ortner Irene1,Eder Gabriele C.2ORCID,Voronko Yuliya2ORCID,Oreski Gernot3ORCID,Berger Karl A.4,Knöbl Karl5,Neumaier Lukas6,Feichtner Markus7

Affiliation:

1. TÜV Austria Data Intelligence Ferdinandstraße 4/1. OG Vienna A‐1020 Austria

2. OFI Austrian Research Institute for Chemistry and Technology Arsenal 213, Franz‐Grill‐Straße 5 Vienna A‐1030 Austria

3. Polymer Competence Center Leoben Roseggerstrasse 12 Leoben A‐8700 Austria

4. Austrian Institute of Technology Giefinggasse 2 Vienna A‐1210 Austria

5. University of Applied Sciences – Technikum Wien Höchstädtplatz 6 Vienna A‐1200 Austria

6. Silicon Austria Labs Europastraße 12 Villach 9524 Austria

7. KIOTO Photovoltaics GmbH Solarstraße 1, A‐9300 St. Veit an der Glan Austria

Abstract

AbstractAlthough the technical and economic properties of the standard polymer photovoltaic (PV) materials (ethylene‐vinyl acetate (EVA) encapsulant and fluorine‐containing polyethylene terephthalate (PET) backsheet) meet the basic technical requirements, more sustainable polyolefin‐based encapsulants and backsheets have been developed. These new polyolefin materials have to prove their performance compared to the established standard materials in terms of the electrical performance of the modules and in terms of reliability. The long‐term stability of the new materials is tested and evaluated using accelerated aging tests and degradation modelling. Based on experimental results, the influence of the type of encapsulant and backsheet (i) on the electrical output power of PV test modules and (ii) on the aging‐related electrical and material degradation under accelerated stress tests was estimated using statistical modelling approaches. First results showing significant effects for encapsulant, backsheet and the combination of both on the initial power output are presented. In general, modules with polypropylene‐based backsheets have a higher initial power (PMPP) than those with PET‐based backsheets, with the combination of thermoplastic polyolefin (TPO) encapsulation material and polyolefin backsheet being superior to the other material combinations. A comparison of the material‐dependent degradation rates obtained from the mixed‐effects models clearly shows that the degradation rate upon damp heat exposure for modules with EVA is significantly larger than that using polyolefin encapsulants. The derived relations aim to provide valuable input for innovative material developments as well as predictive maintenance specifications.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3