Abstract
Given a surface S in a 3D contact sub-Riemannian manifold M, we investigate the metric structure induced on S by M, in the sense of length spaces. First, we define a coefficient K̂ at characteristic points that determines locally the characteristic foliation of S. Next, we identify some global conditions for the induced distance to be finite. In particular, we prove that the induced distance is finite for surfaces with the topology of a sphere embedded in a tight coorientable distribution, with isolated characteristic points.
Funder
Agence Nationale de la Recherche
DIM Math Innov
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献