Sub-Riemannian Geometry of Curves and Surfaces in Roto-Translation Group Associated with Canonical Connection

Author:

Zhang Han1,Liu Haiming1ORCID

Affiliation:

1. School of Mathematics, Mudanjiang Normal University, Mudanjiang 157011, China

Abstract

The aim of this paper is to obtain the sub-Riemannian properties of the roto-translation group RT. At the same time, we compute the sub-Riemannian limits of Gaussian curvature associated with two kinds of canonical connections for a C2-smooth surface in the roto-translation group away from characteristic points and signed geodesic curvature associated with two kinds of canonical connections for C2-smooth curves on surfaces. Based on these results, we obtain a Gauss-Bonnet theorem in the RT.

Funder

the Project of Science and Technology of Heilongjiang Provincial Education Department

the Reform and Development Foundation for Local Colleges and Universities of the Central Government

Project of KCSZ of MNU

Publisher

MDPI AG

Reference17 articles.

1. Modern robotics: Mechanics, planning, and control [bookshelf];Mueller;IEEE Control Syst.,2019

2. Locally adaptive frames in the roto-translation group and their applications in medical imaging;Duits;J. Math. Imaging Vis.,2016

3. Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model;Hladky;J. Math. Imaging Vis.,2010

4. Ryu, H., Lee, H.I., Lee, J.H., and Choi, J. (2022). Equivariant descriptor fields: SE(3)-equivariant energy-based models for end-to-end visual robotic manipulation learning. arXiv.

5. Template matching via densities on the roto-translation group;Bekkers;IEEE Trans. Pattern Anal. Mach. Intell.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3