Stabilization of the response of cyclically loaded lattice spring models with plasticity

Author:

Gudoshnikov Ivan,Makarenkov Oleg

Abstract

This paper develops an analytic framework to design both stress-controlled and displacement-controlled T-periodic loadings which make the quasistatic evolution of a one-dimensional network of elastoplastic springs converging to a unique periodic regime. The solution of such an evolution problem is a function t↦(e(t), p(t)), where ei(t) is the elastic elongation and pi(t) is the relaxed length of spring i, defined on [t0, ) by the initial condition (e(t0), p(t0)). After we rigorously convert the problem into a Moreau sweeping process with a moving polyhedron C(t) in a vector space E of dimension d, it becomes natural to expect (based on a result by Krejci) that the elastic component te(t) always converges to a T-periodic function as t. The achievement of this paper is in spotting a class of loadings where the Krejci’s limit doesn’t depend on the initial condition (e(t0), p(t0)) and so all the trajectories approach the same T-periodic regime. The proposed class of sweeping processes is the one for which the normals of any d different facets of the moving polyhedron C(t) are linearly independent. We further link this geometric condition to mechanical properties of the given network of springs. We discover that the normals of any d different facets of the moving polyhedron C(t) are linearly independent, if the number of displacement-controlled loadings is two less the number of nodes of the given network of springs and when the magnitude of the stress-controlled loading is sufficiently large (but admissible). The result can be viewed as an analogue of the high-gain control method for elastoplastic systems. In continuum theory of plasticity, the respective result is known as Frederick-Armstrong theorem.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

EDP Sciences

Subject

Computational Mathematics,Control and Optimization,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3