Author:
Boulakia Muriel,de Buhan Maya,Schwindt Erica L.
Abstract
In this article, we consider a reaction–diffusion equation where the reaction term is given by a cubic function and we are interested in the numerical reconstruction of the time-independent part of the source term from measurements of the solution. For this identification problem, we present an iterative algorithm based on Carleman estimates which consists of minimizing at each iteration cost functionals which are strongly convex on bounded sets. Despite the nonlinear nature of the problem, we prove that our method globally converges and the convergence speed evaluated in weighted norm is linear. In the last part of the paper, we illustrate the effectiveness of our method with several numerical reconstructions in dimension one or two.
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献