Author:
Klibanov Michael V.,Le Thuy T.,Nguyen Loc H.,Sullivan Anders,Nguyen Lam
Abstract
<p style='text-indent:20px;'>To compute the spatially distributed dielectric constant from the backscattering computationally simulated ane experimentally collected data, we study a coefficient inverse problem for a 1D hyperbolic equation. To solve this inverse problem, we establish a new version of the Carleman estimate and then employ this estimate to construct a cost functional, which is strictly convex on a convex bounded set of an arbitrary diameter in a Hilbert space. The strict convexity property is rigorously proved. This result is called the convexification theorem and it is the central analytical result of this paper. Minimizing this cost functional by the gradient descent method, we obtain the desired numerical solution to the coefficient inverse problems. We prove that the gradient descent method generates a sequence converging to the minimizer starting from an arbitrary point of that bounded set. We also establish a theorem confirming that the minimizer converges to the true solution as the noise in the measured data and the regularization parameter tend to zero. Unlike the methods, which are based on the optimization, our convexification method converges globally in the sense that it delivers a good approximation of the exact solution without requiring a good initial guess. Results of numerical studies of both computationally simulated and experimentally collected data are presented.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Control and Optimization,Discrete Mathematics and Combinatorics,Modeling and Simulation,Analysis,Control and Optimization,Discrete Mathematics and Combinatorics,Modelling and Simulation,Analysis
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献