Abstract
For a smooth closed embedded planar curve Γ, we consider the minimization problem of the Willmore energy among immersed surfaces of a given genus 𝔤 ≥ 1 having the curve Γ as boundary, without any prescription on the conormal. In case Γ is a circle we prove that do not exist minimizers and that the infimum of the problem equals β𝔤 − 4π, where β𝔤 is the energy of the closed minimizing surface of genus 𝔤. We also prove that the same result also holds if Γ is a straight line for the suitable analogously defined minimization problem on asymptotically flat surfaces. Then we study the case in which Γ is compact, 𝔤 = 1 and the competitors are restricted to a suitable class 𝒞 of varifolds that includes embedded surfaces. We prove that under suitable assumptions minimizers exists in this class of generalized surfaces.
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献