Boundary value problems for a special Helfrich functional for surfaces of revolution: existence and asymptotic behaviour

Author:

Deckelnick Klaus,Doemeland Marco,Grunau Hans-Christoph

Abstract

AbstractThe central object of this article is (a special version of) the Helfrich functional which is the sum of the Willmore functional and the area functional times a weight factor $$\varepsilon \ge 0$$ ε 0 . We collect several results concerning the existence of solutions to a Dirichlet boundary value problem for Helfrich surfaces of revolution and cover some specific regimes of boundary conditions and weight factors $$\varepsilon \ge 0$$ ε 0 . These results are obtained with the help of different techniques like an energy method, gluing techniques and the use of the implicit function theorem close to Helfrich cylinders. In particular, concerning the regime of boundary values, where a catenoid exists as a global minimiser of the area functional, existence of minimisers of the Helfrich functional is established for all weight factors $$\varepsilon \ge 0$$ ε 0 . For the singular limit of weight factors $$ \varepsilon \nearrow \infty $$ ε they converge uniformly to the catenoid which minimises the surface area in the class of surfaces of revolution.

Funder

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Elastic graphs with clamped boundary and length constraints;Annali di Matematica Pura ed Applicata (1923 -);2023-11-10

2. A Helfrich functional for compact surfaces in;Glasgow Mathematical Journal;2023-10-04

3. The Euler–Helfrich functional;Calculus of Variations and Partial Differential Equations;2022-03-20

4. Bifurcation of elastic curves with modulated stiffness;European Journal of Applied Mathematics;2022-01-28

5. Minimisers of Helfrich functional for surfaces of revolution;Communications on Pure and Applied Analysis;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3