Abstract
Owing to global climate change and atmospheric pollution, several automobile manufacturing companies look for homogeneously charged engines to satisfy strict emission levels. In the present work, computational fluid dynamics (CFD) investigations have been carried out to showcase the homogeneity of air-fuel mixture formation by port fuel injection and manifold fuel injection of a Biogas-Diethyl Ether (DEE) homogeneous charge compression engine (HCCI). The distributions of equivalence ratio based on fuel and the total air-fuel mixture is formulated and found to be in close agreement with the literature. Earlier investigations have shown that the use of biogas as a single fuel causes lower power output compared to other alternative fuels. Hence the present study is planned to use biogas with DEE as an ignition improver via fuel injection systems to find the best suitable fuel injection system. In the mesh independent study, port injection mode is found to perform better against the manifold injection mode when compared with the homogeneity factor. Iso-volumes of excess-air ratio based on biogas, diethyl ether and other variables such as the density, turbulent kinetic energy, turbulent dissipation rate of air-fuel mixture influencing the homogeneity and equivalence ratio are studied for better in-cylinder distribution under the port injection mode.
Subject
Control and Optimization,Modeling and Simulation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献