Numerical simulation of heat sinks with different configurations for high power LED thermal management

Author:

Ramesh Thangamani,Praveen Ayyappan Susila,Pillai Praveen Bhaskaran,Salunkhe SachinORCID

Abstract

This study performed a steady-state numerical analysis to understand the temperature in different heat sink configurations for LED applications. Seven heat sink configurations named R, H-6, H-8, H-10, C, C3, and C3E3 were considered. Parameters like input power, number of fins, heat sink configuration were varied, and their influence on LED temperature distribution, heat sink thermal resistance and thermal interface material temperature were studied. The results showed that the temperature distribution of the H-6 heat sink decreased by 46.30% compared with the Cheat sink for an input power of 16 W. The result of the H-6 heat sink shows that the heat sink thermal resistance was decreased by 73.91% compared with the Cheat sink at 16 W. The lowest interface material temperature of 54.11 °C was achieved by the H-6 heat sink when the input power was used 16 W. The H-6 heat sink exhibited better performance due to more surface area with several fins than other heat sinks.

Publisher

EDP Sciences

Subject

Control and Optimization,Modeling and Simulation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3