Molecular detection and genotyping of Enterocytozoon bieneusi in pet dogs in Xinjiang, Northwestern China

Author:

Cao Yangwenna,Tong Qinglin,Zhao Chenhao,Maimaiti Aikebaierjiang,Chuai Liwen,Wang Junjie,Ma Dingyun,Qi Meng

Abstract

Enterocytozoon bieneusi is an obligate intracellular parasitic fungi that infects a wide range of mammalian hosts. However, the literature is lacking information regarding the presence and diversity of E. bieneusi genotypes in domesticated dogs in Northwestern China. Fecal samples from 604 pet dogs were obtained in 5 cities (Urumqi, Korla, Hotan, Aksu, and Shihezi) in Xinjiang. Screening for E. bieneusi was performed, and isolates were genotyped via nested-PCR amplification of the internal transcribed spacer (ITS) of nuclear ribosomal DNA. The infection rate of E. bieneusi was 6.3% (38/604). The prevalence of E. bieneusi infections in adult animals (>1 year, 10.3%, 15/145) was higher than that in younger (≤1 year) dogs (5.0%, 23/459), which was statistically significant (p = 0.021). No significant difference was observed between the different collection sites or between sexes. Eight distinct genotypes were identified, including 5 known genotypes (PtEb IX, EbpC, D, CD9, and Type IV) and 3 novel genotypes (CD11, CD12, CD13). The most prevalent was genotype PtEb IX, being observed in 50.0% (19/38) of the samples, followed by EbpC (31.6%, 12/38), D (5.3%, 2/38), and the remaining genotypes (CD9, Type IV, CD11, CD12, and CD13) were observed in 1 sample (2.6%, 1/38) each. These findings suggest that genotypes PtEb IX and CD9 are canine host-adapted, and likely pose little risk of zoonotic transmission. Moreover, known zoonotic genotypes EbpC, D, and Type IV represent a public health concern and should undergo further molecular epidemiological investigation.

Funder

innovation of the xinjiang production & construction gorps

National College Students’ Innovation and Entrepreneurship Training Program

Publisher

EDP Sciences

Subject

Infectious Diseases,Animal Science and Zoology,Veterinary (miscalleneous),Insect Science,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3