Extension of the forming limits of extrusion processes in sheet-bulk metal forming for production of minute functional elements

Author:

Pilz Florian,Henneberg JohannesORCID,Merklein Marion

Abstract

Increasing demands in modern production pose new challenges to established forming processes. One approach to meet these challenges is the combined use of established process classes such as sheet and bulk forming. This innovative process class, also called sheet-bulk metal forming (SBMF), facilitates the forming of minute functional elements such as lock toothing and gear toothing on sheet-metal bodies. High tool loads and a complex material flow that is hard to control are characteristic of SBMF. Due to these challenging process conditions, the forming of functional elements is often insufficient and necessitates rework. This negatively affects economic efficiency. In order to make use of SBMF in industrial contexts, it is necessary to develop measures for improving the forming of functional elements and thereby push existing forming boundaries. This paper describes the design and numerical replication of both a forward and a lateral extrusion process so as to create involute gearing in combination with carrier teeth. In a combined numerical-experimental approach, measures for extending the die filling in sheet-metal extrusion processes are identified and investigated. Here, the focus is on approaches such as process parameters, component design and locally adjusted tribological conditions; so-called ‘tailored surfaces’. Based on the findings, fundamental mechanisms of action are identified, and measures are assessed with regard to their potential for application. The examined approaches show their potential for improving the forming of functional elements and, consequently, the improvement of geometrical accuracies in functional areas of the workpieces.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3