Measures for controlling the material flow when extruding sheet-bulk metal forming parts from coil

Author:

Henneberg JohannesORCID,Merklein MarionORCID

Abstract

The increasing demand for lightweight design requires functional integration. This poses challenges to conventional manufacturing processes due to the rising geometrical complexity of components. The application of bulk forming operations to sheet metal, named sheet-bulk metal forming (SBMF), is one approach to overcome these challenges. Currently, mainly pre-cut blanks are applied in research of SBMF. Production from coil, in contrast, would combine the advantages of SBMF with the advantages of manufacturing from a coil regarding high output quantity. To research SBMF from coil, a lateral and a backward extrusion process are set up. In addition to a reduced geometrical accuracy of the parts, which is known from SBMF of pre-cut blanks, an anisotropic material flow is identified as a coil-specific challenge. The aim of this research is to investigate measures that extend the forming limits by means of a material flow control. For this purpose, a combined numerical-experimental approach is applied in order to analyze and evaluate an adaption of the width of the coil, the feed width, and the local friction as measures for material flow control. Particularly local adaptation of friction by means of modified tool surfaces reduces the anisotropic material flow and improves the geometrical accuracy of the parts.

Funder

German Research Foundation

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering

Reference34 articles.

1. Metal forming progress since 2000

2. Forming of Lightweight Metal Components: Need for New Technologies

3. Merklein M., Hagenah H., Schneider T., Sheet-bulk metal forming processes − state of the art and its perspective, in Science Meets Industry, TTP, Tools and Technologies for Processing Ultra High Strength Materials, 2013, Verlag der Technischen Universität, Graz, 2013, 197–204

4. Bulk forming of sheet metal

5. State-of-the-art of plate forging in Japan

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3