Author:
Li Xuechao,Guo Lianggang,Wang Yifan,Liang Lei
Abstract
The microstructures of hard-to-deform materials such as titanium alloy are very sensitive to temperature change in hot working process. During ring rolling process, unreasonable rolling paths will lead to drastic temperature change in local region of ring, thus damaging the microstructure and performance of rolled ring. This work proposes a method for designing the rolling paths which could accurately control the ring temperature by target-temperature driven intelligent FE simulation. The main idea of target-temperature driven intelligent simulation is introduced. An intelligent 3D-FE model for TA15 titanium alloy ring rolling is established under ABAQUS/Explicit environment. The rolling paths under different initial conditions are obtained by intelligent FE simulations. The influence rule of initial conditions on rolling paths is revealed. The temperature control effects and change under different initial conditions are discussed. Considering the temperature control effects, a feasible range of initial ring temperature is suggested. Using the proposed method, the quick and accurate design for the rolling paths in radial-axial ring rolling process is realized. It is of great significance for the design and optimization of rolling paths and the accurate regulation of ring temperature in actual production.
Funder
National Natural Science Foundation of China
Research & Development Institute of Northwestern Polytechnical University in Shenzhen
Subject
Industrial and Manufacturing Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献