On the Fundamentals of Reverse Ring Rolling: A Numerical Proof of Concept

Author:

Pressas Ioannis S.1ORCID,Papaefthymiou Spyros2ORCID,Manolakos Dimitrios E.1ORCID

Affiliation:

1. Laboratory of Manufacturing Technology, School of Mechanical Engineering, National Technical University of Athens, 9, Heroon Polytechniou Street, 15780 Athens, Greece

2. Laboratory of Physical Metallurgy, Division of Metallurgy and Materials, School of Mining & Metallurgical Engineering, National Technical University of Athens, 9, Heroon Polytechniou Street, 15780 Athens, Greece

Abstract

Ring Rolling is a near-net manufacturing process with some measurable dimensional inaccuracies in its products. This fact is exaggerated even more under the scope of high-precision manufacturing, where these imprecisions render such products unfitting for the strict dimensional requirements of high-precision applications (e.g., bearings, casings for turbojets, etc.). In order to remedy some of the dimensional inaccuracies of Ring Rolling, the novel approach of Reverse Ring Rolling is proposed and investigated in the current analysis. The conducted research was based on a numerical simulation of a flat Ring Rolling process, previously presented by the authors. Since the final dimensions of the ring from the authors’ previous work diverged from those initially expected, the simulation of a subsequent Reverse Ring Rolling process was performed to reach the target dimensions. The calculated deformational results revealed a great agreement in at least two of the three crucial dimensions. Additionally, the evaluation of the calculated stress, strain, temperature and load results revealed key aspects of the mechanisms that occur during the proposed process. Overall, it was concluded that Reverse Ring Rolling can effectively function as a corrective process, which can increase the dimensional accuracy of a seamless ring product with little additional post-processing and cost.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3