Study on tensile and fatigue failure in the low-hardness zone of AA2519-T62 FSW joint

Author:

Kosturek RobertORCID,Slezak Tomasz,Torzewski Janusz,Wachowski Marcin,Sniezek Lucjan

Abstract

The aim of this research was to investigate the basic performance and failure of AA2519-T62 friction stir welded joint in tensile test and in low cycle fatigue regime. It has been reported that at the retreating side, the layer of overgrowth grains undergoes deformation in the TMAZ and forms a characteristic large-grain band partly surrounding the SZ. The reported UTS is very high and it equals 405 MPa, what corresponds to 86.5% joint efficiency value. The failure occurred in the LHZ at the retreating side with the fracture mechanism characterized by simultaneously cracking in several parallel planes. The LCF behavior of the tested joint indicates three stages of fatigue life: a relatively long period of cyclic hardening (up to 500–1000 cycles), the longest period of cyclic stabilization, followed by cyclic softening until failure. The fatigue crack initiation takes place in the near-surface layer of overgrown grains and then propagates through the low-hardness zone.

Funder

Polish Ministry of National Defence

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3