Effect of Shot Peening on the Low-Cycle Fatigue Behavior of an AA2519-T62 Friction-Stir-Welded Butt Joint

Author:

Kosturek Robert1ORCID,Ślęzak Tomasz1ORCID,Torzewski Janusz1ORCID,Bucior Magdalena2ORCID,Zielecki Władysław2,Śnieżek Lucjan1ORCID,Sęp Jarosław2

Affiliation:

1. Faculty of Mechanical Engineering, Military University of Technology, 2 Gen. S. Kaliskiego Str., 00-908 Warsaw, Poland

2. Department of Manufacturing Processes and Production Engineering, Rzeszow University of Technology, 8 Powstańców Warszawy Str., 35-959 Rzeszow, Poland

Abstract

In this investigation, an AA2519-T62 FSW butt joint was subjected to shot peening with an air pressure of p = 0.6 MPa, a processing time of t = 10 min (per side), and a steel ball diameter of dk = 1.5 mm. In order to evaluate the impact of shot peening on the low-cycle behavior, the samples were tested with coefficient R = 0.1 at total strain amplitudes of 0.35%, 0.4%, and 0.5%. The shot-peened welds are characterized by a higher value of stress amplitude, a lower value of plastic strain amplitude, and their fatigue life increased slightly. The cyclic strength coefficient and the cyclic strain hardening exponent were reduced by 45% and 55%, respectively, as the result of the surface layer hardening. The shot peening process had no noticeable effect on the character of crack initiation and propagation. Almost in all cases, the cracking started in the area under the weld face, located close to the boundary between the thermo-mechanically affected zone and the stir zone at the advancing side. Only at the heaviest loadings (εac = 0.5%) were cracks initiated in the heat-affected zone at the retreating side. Despite the introduction of small cracks in the stir zone, their presence did not affect the decohesion character of the welded joint. Overall, it was observed that there is a minimal, positive impact of shot peening on the properties of the investigated joints.

Funder

Military University of Technology

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3