Micro-grinding temperature prediction considering the effects of crystallographic orientation

Author:

Zhao Man,Ji Xia,Liang Steven Y.

Abstract

Tensile stress and thermal damage resulting from thermal loading will reduce the anti-fraying and anti-fatigue of workpieces, which is undesirable for micro-grinding, so it is imperative to control the rise of temperature. This investigation aims to propose a physical-based model to predict the temperature with the process parameters, wheel properties and material microstructure taken into account. In the calculation of heat generated in the micro-grinding zone, the triangular heat-flux distribution is adopted. The reported energy partition model is also utilized to calculate the heat converted into the workpiece. In addition, the Taylor factor model is used to estimate the effects of crystallographic orientation (CO) and its orientation distribution function (ODF) on the workpiece temperature by affecting the flow stress and grinding forces in micro-grinding. Finally, the physical model is verified by performing micro-grinding experiments using the orthogonal method. The result proves that the prediction matches well with the experimental values. Besides, the single-factorial experiments are conducted with the result showing that the model with the consideration of the variation of Taylor factor improves the accuracy of the temperature prediction.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3