Heterosis for seed, oil yield and quality of some different hybrids sunflower

Author:

Abdel-Rahem Mohamed,Hassan Tamer H.A.,Zahran Hamdy A.ORCID

Abstract

Twenty-one hybrids of sunflower were produced by crossing 7 introduced cytoplasmic male sterile lines (CMS-lines) with 3 restorer lines (RF-lines) using line × tester mating design. The twenty-one hybrids, three restorers, seven maintainer lines (B-lines) were evaluated. The experiment was conducted in a randomized complete block design of three replications. Mean squares due to genotypes, parents (P), crosses (C), lines (L), testers (T), P vs. C, for stearic acid and line × tester for palmitic acid. The inbred lines and their F1 hybrids differed significantly in their mean values of the traits under study. The variances due to specific combining ability (SCA) were higher than general combining ability (GCA) variances for all the studied traits, showing non-additive type of gene action controlling the traits. Non-additive type of gene action can be utilized for varietal improvement through heterosis breeding. Heterosis values for seed yield plant−1 were positive and highly significant relative to both the parental mean (17.68–72.38%) and the better parent (−2.86–56.842%). Significantly and negative heterosis was recorded in the case of linoleic acid relative to the parental mean (−81.24 to −38.02%) and better parent (−66.24–22.87%). With oleic acid, the heterotic effect ranged from −14.18 to 39.59% (parental mean) and from −15.06 to 38.72% (better parent). Therefore, these results are valuable for the improvement of quantitative as well as qualitative traits in sunflower breeding material to fulfill the edible oil requirements.

Publisher

EDP Sciences

Subject

Agronomy and Crop Science,Biochemistry,Food Science

Reference44 articles.

1. AOAC. 1990. Official methods of analysis of the association of official analysis agriculture chemists. Washington, D.C.: A.S.A.

2. Magnitude and Nature of Gene Effects Controlling Oil Content and Quality Components in Sunflower (Helianthus Annuus L.)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3