Cement-fly ash mortars durability, with fly ash from fluidized bed boilers and conventional combustion, exposed to aggressive environment influence

Author:

Janowska-Renkas Elżbieta,Kowalska Jolanta,Janus Grzegorz,Kaliciak Agnieszka

Abstract

The study shows results of research on the aggressive environment impact (1, 3 and 5% HCl solution) on durability of cement mortars with fraction from 30 to 45% by mass of fly ashes from the fluidized bed combustion (FBC fly ash) and conventional fly ashes used separately and in the form of a mixture. The impact of aggressive environments on durability of cement and ash mortars was tested for aperiod of 365 days, by testing the compressive strength, linear changes, mass loss and porosity. It was demonstrated that mortars with the content of FBC fly ashes, after 365 days of tests showed the higher resistance to aggressive environment impact. It is confirmed by e.g. their higher compressive strength, and thus the reduced total porosity. Reduction of total porosity content (<50 nm) was accompanied by the increased compressive strength, which in the aqueous environment was in favour of cement mortars, and in the aggressive environment in favour of cement and ash mortars. It was demonstrated that the content of pores < 200 nm was lower for mortars with FBC fly ashes and mixtures of ashes regardless of environment the mortars were stored in. A beneficial impact of FBC fly ashes was found on physical properties of mortars, i.e. reduction of the shrinkage, lower mass loss and reduced destruction of mortars in the acid corrosion environment. That effect was especially beneficial for the mortar with higher (45% by mass) content of FBC fly ashes, regardless of aggressive character of the environment.

Publisher

EDP Sciences

Subject

General Medicine

Reference23 articles.

1. Energy policies of IEA Countries- Poland - 2016 review, 73

2. Bartnik R., Problems facing the Polish power engineering, Conference - “XVII Innowacje w Zarządzaniu i Inżynierii Produkcji”, 379-391 (2014)

3. Brandt A. M. (Ed.) Application of CFBC fly ash in structural concretes (IPPT, 2010)

4. Conn R. E., Sellakumar K., Utilization of CFB fly ash for construction applications, Proceedings of the 15th International Conference on Fluidized Bed Combustion, (1999)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3