Abstract
The motivation for research to help address climate change is a continuous process of searching for eco-friendly materials in the building industry, which will allow minimizing the negative impact of this sector on the environment. The main objective of the paper is to assess the properties of a natural resource such as straw as an eco-friendly material in various variants for use in low-energy demand construction. The research results will fill the knowledge gap in the field of numerical analyses of the energy demand of straw material buildings based on the results of the conducted laboratory tests. A test of a heat transfer coefficient was conducted with different orientation of straw stalks. Then, samples were subject to a fire resistance test to determine material behavior at 1000 °C. During the fire resistance test, the clay-based plaster was ‘burnt out’, which hardened its structure, effectively preventing flames from reaching the insulation layers in the form of straw stalks. As a result of shrinkage (no plaster mesh), the plaster cracked and turned brick-red in color. The insulation layer of straw under the plaster was charred to a depth of 3.0 mm due to the high temperature. However, when the torch was turned off, no fire spread was observed in any layer of the sample. The 3D models of the buildings were created for different eco-friendly materials applied to make external walls. The results of numerical simulation allowed determining the amount of final energy needed to heat the designed building at the level of 26.38 (kWh/m2·year). Conclusions of the above-mentioned tests indicate very good thermal insulating properties determined using the lambda coefficient of 0.069 (W/m·K) and the possible application of straw bales as an alternative for conventional construction. Research has proven that it is possible to construct a building with low energy requirements using natural, easily available waste and completely biodegradable material.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献