Overview of ground-based generator towers as cloud seeding facilities to optimize water resources in the Larona Basin

Author:

Prasetio Anom,Widjiantoro Bambang L.,MT Nasution Aulia

Abstract

The Larona River Basin which cover an area of 2477 km2, including the three cascading lakes: Matano, Mahalona, and Towuti Lakes, is a strategic watershed which acts as the water resource for three hydropower plants that supply 420 Megawatt of electricity to power a nickel processing plant and its supporting facilities and electricity need of the surrounding communities. The maximum and minimum operating levels of Towuti Lake are 319.6 meters (asl) and 317.45 meters (asl) respectively. Total live storage between these two elevations is 1,231,500 m3. Currently, the operation average outflow from Towuti Lake to the power plants is 130.1 m3/second which is resulting in a total annual outflow volume of 4,103,000 m3. By comparing the outflow volume with the live storage volume, it is obvious that present live storage has a limited capability to carry over the capacity from wet to dry years. During a dry year, the outflow drops to 100 m3/second. Thus, the optimization of water resources management in the Larona Basin is important to fulfil the need to produce the energy sources. To deal with the decrease of the Lakes water level, the Weather Modification Technology in the form of cloud seeding is needed to produce rain that will increase the water volume in the Lakes. The dispersion of cloud seeding material into the targeted clouds can be done by surface seeding using the Ground-Based Generator (GBG) which utilize towers to release cloud seeding materials. The tower locations should be in certain altitude or higher locations and amounts in order to operate effectively with optimum results. The water discharges generated from the process is expected in accordance with the planning. The weather modification process is inefficient when the discharge is overflow the spillway channel. Cost incurred is in approximate of US$ $11,133,258.36 if the company is utilizing Diesel Power Plant and Steam Power Plant instead of the weather modification technology.

Publisher

EDP Sciences

Subject

General Medicine

Reference19 articles.

1. Bechtel Corp., Larona river water management study UMLA000081 (PT INCO, 1988)

2. Badan Pengkajian dan Penerapan Teknologi, Laporan GBG PLTA Tondano (2017)

3. Bechtel Corp., Streamflow and Lake Towuti yield investigation UMLA000082 (PT INCO, 1975)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3