Hygroscopic Ground-Based Generator Cloud Seeding Design; A Case Study from the 2020 Weather Modification in Larona Basin Indonesia

Author:

Renggono FindyORCID,Kudsy Mahally,Adhitya KrisnaORCID,Purwadi Purwadi,Belgaman Halda AdityaORCID,Dewi SaraswatiORCID,Syahdiza Rahmawati,Mulyana Erwin,Aldrian Edvin,Arifian Jon

Abstract

Cloud seeding activities have been carried out in the form of experiments and operation activities as part of water resource management in some parts of the world. Recently, a new method of cloud seeding using a ground-based generator (GBG) was introduced in Indonesia. This method is used to seed orographic clouds with the aid of a 50 m GBG tower located in a mountainous area. By taking advantage of the topography and local circulation, the GBG tower will introduce hygroscopic seeding materials into orographic clouds to accelerate the collision and coalescence process within the clouds, increasing the cloud’s rainfall amount. The hygroscopic ground-based cloud seeding was conducted over the Larona Basin in Sulawesi, Indonesia, from December 2019 to April 2020. There were five towers installed around Larona Basin, located over 500 m above sea level. The results show that there was an increase in monthly rainfall amount from the GBG operation period in January, February, and March compared to its long-term average of as much as 79%, 17%, and 46%, respectively. Meanwhile, despite an increase of 0.4% in Lake Towuti water level, it is still not concluded that the GBG cloud seeding operation was involved in the lake water level raise. Therefore, more studies need to be performed in the future to answer whether the cloud seeding affected the lake water level.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3