No spillover partial eigenvalue assignment in second-order linear systems using the Brauer’s theorem and dense influence matrices

Author:

Motta Jessica,de Almeida Marconi,Santos Tito,Araújo José

Abstract

The control of vibrations for systems with second-order linear dynamics is a cornerstone for several engineering application, as structural vibration control in civil and aerospace structures. In such systems, sometimes only a few eigenvalues must be mitigated in situations as resonances, flutter, and another dangerous vibratory phenomenon. The use of active vibration control is an attractive alternative due to its flexibility and the availability of general design approaches. In the case of partial eigenvalue assignment, no spillover can be achieved, that is, only a small spectrum or eigenstructure partition is reallocated, with the remaining being unperturbed. In this paper, the no spillover property of Brauer’s spectrum perturbation theorem is applied to compute a dense influence matrix structure of actuation, reassigning then the dangerous target eigenvalues and kept the remaining of the spectrum unchanged. A Sylvester equation must be solved using only the part of the spectrum to be reassigned. The results are tested in a benchmark taken from the specialized literature, and thus confirming its effectiveness.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3