No Spillover Eigenvalues Assignment of Second-Order Systems with Dense Force Actuators Matrices Using Brauer’s Theorem

Author:

Araújo José Mário1,Santos Tito Luís Maia2

Affiliation:

1. Grupo de Pesquisa em Sinais e Sistemas, Instituto Federal da Bahia, Rua Emídios dos Santos, S/N, Barbalho, Brazil

2. Departamento de Engenharia Elétrica e de Computação, Universidade Federal da Bahia, Rua Aristides Novis, 2, Federação, Salvador-BA, Brazil

Abstract

This paper presents an approach for eigenvalue assignment in second-order linear systems with no spillover property. Second-order differential equations arise from dynamical modeling of vibrating structures by finite element or lumped parameter first principles approach in several practical problems. Certain structures can face practical issues when subjected to external perturbation forces, as resonance or flutter type vibrations. The control of excessive vibrations can be attempted by techniques of active vibration control using linear feedback. To change only a few eigenvalues and eigenvectors that cause excessive vibrations, the requirement of no spillover property is a somewhat attractive issue. Furthermore, only the part of the eigenstructure whose eigenvalues must be reassigned is necessary to be known for an efficient parametrization of the feedback matrices. Brauer’s theorem, a milestone result of linear algebra, as well as some recent related results, is applied here to achieve partial eigenvalue assignment using dense force actuator (influence) matrices. The proposal can be applied to general systems with no restriction on the mass, damping, and stiffness with symmetry or definiteness. The procedures to implement the proposal are synthesized in a step-by-step form, and some numerical examples are given to illustrate its application.

Funder

CNPq

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3