Convolutional Noise PDF at the Convergence State of a Blind Adaptive Equalizer

Author:

Pinchas Monika

Abstract

In the literature, the convolutional noise obtained at the output of a blind adaptive equalizer, is often modeled as a Gaussian process during the latter stages of the deconvolution process where the process is close to optimality. However, up to now, no strong mathematical basis was given supporting this phenomenon. Furthermore, no closed-form or closed-form approximated expression is given that shows what are the constraints on the system’s parameters (equalizer’s tap-length, input signal statistics, channel power, chosen equalization method and step-size parameter) for which the assumption of a Gaussian model for the convolutional noise holds. In this paper, we consider the two independent quadrature carrier input case and type of blind adaptive equalizers where the error that is fed into the adaptive mechanism which updates the equalizer’s taps can be expressed as a polynomial function of the equalized output up to order three. We show based on strong mathematical basis that the convolutional noise pdf at the latter stages of the deconvolution process where the process is close to optimality, is approximately Gaussian if complying on some constraints depending on the step-size parameter, input constellation statistics, channel power, chosen equalization method and equalizer’s tap-length. Simulation results confirm our findings.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3