Sparse multichannel blind deconvolution

Author:

Kazemi Nasser1,Sacchi Mauricio D.1

Affiliation:

1. University of Alberta, Department of Physics, Edmonton, Alberta, Canada..

Abstract

We developed a sparse multichannel blind deconvolution (SMBD) method. The method is a modification of the multichannel blind deconvolution technique often called Euclid deconvolution, in which the multichannel impulse response of the earth is estimated by solving an homogeneous system of equations. Classical Euclid deconvolution is unstable in the presence of noise and requires the correct estimation of the length of the seismic wavelet. The proposed method, on the other hand, can tolerate moderate levels of noise and does not require a priori knowledge of the length of the wavelet. SMBD solves the homogeneous system of equations arising in Euclid deconvolution by imposing sparsity on the unknown multichannel impulse response. Trivial solutions to the aforementioned homogeneous system of equations are avoided by seeking sparse solutions on the unit sphere. We tested SMBD with synthetic and real data examples. Synthetic examples were used to judge the viability of the method in terms of noise. We found that SMBD gives reasonable estimates of the wavelet and reflectivity series for [Formula: see text]. The results clearly deteriorated when we tried to work on data that were severely contaminated by noise. A real marine data set was also used to test SMBD. In this case, the estimated wavelet was compared with a wavelet estimated by averaging first breaks. The estimated wavelet showed a noticeable resemblance to the average first break with normalized correlation coefficient of 0.92.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3