Impact of feature selection on system identification by means of NARX-SVM

Author:

Awtoniuk Michał,Daniun Marcin,Sałat Kinga,Sałat Robert

Abstract

Support Vector Machines (SVM) are widely used in many fields of science, including system identification. The selection of feature vector plays a crucial role in SVM-based model building process. In this paper, we investigate the influence of the selection of feature vector on model’s quality. We have built an SVM model with a non-linear ARX (NARX) structure. The modelled system had a SISO structure, i.e. one input signal and one output signal. The output signal was temperature, which was controlled by a Peltier module. The supply voltage of the Peltier module was the input signal. The system had a non-linear characteristic. We have evaluated the model’s quality by the fit index. The classical feature selection of SVM with NARX structure comes down to a choice of the length of the regressor vector. For SISO models, this vector is determined by two parameters: nu and ny. These parameters determine the number of past samples of input and output signals of the system used to form the vector of regressors. In the present research we have tested two methods of building the vector of regressors, one classic and one using custom regressors. The results show that the vector of regressors obtained by the classical method can be shortened while maintaining the acceptable quality of the model. By using custom regressors, the feature vector of SVM can be reduced, which means also the reduction in calculation time.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3