On the Application of Support Vector Method for Predicting the Current Response of MR Dampers Control Circuit

Author:

Sapiński BogdanORCID,Gołdasz JanuszORCID,Jastrzębski ŁukaszORCID,Awtoniuk MichałORCID,Sałat RobertORCID

Abstract

Magnetorheological (MR) dampers are controlled energy-dissipating devices utilizing smart fluids. They operate in a fast and valveless manner by taking advantage of the rheological properties of MR fluids. The magnitude of the response of MR fluids, when subjected to magnetic fields, is of sufficient magnitude to employ them in various applications, namely, vibration damping, energy absorption, exoskeletons, etc. At the same time, predicting their response to arbitrary mechanical and electrical inputs is still a research challenge. Due to the non-linearities involved in material properties or the design of the solenoid used for activating the fluid modeling the relationships between the control circuit and the material’s response is complex. Modeling studies can be classified into two categories. The parametric approach requires the knowledge of the internal material’s properties and takes advantage of physics formulas to infer the I/O relationships present in the damper. For comparison, the non-parametric approach harnesses various data mapping techniques to describe the device’s behavior. While the latter is more suited for design studies, the former seems ideal for control algorithm prototyping and the like. In this study, based on the so-called Support Vector Method (SVM), the authors develop a non-parametric model of the control circuit of an exemplary rotary MR damper. To the best of the author’s knowledge, it is the first attempt at an SVM application for MR dampers’ control circuit modeling. Using the acquired experimental data, the I/O relationships are inferred using the SVM algorithm, and its performance is verified across a wide range of excitation frequencies. The obtained results are satisfactory, and the current response of the MR damper is well-predicted. The model performance shows the potential for incorporating it into model-based prototyping and designing of MR control systems.

Funder

AGH University of Science and Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference44 articles.

1. Parametric study on the performance of automotive MR shock absorbers;Proceedings of the IOP Conference Series: Materials Science and Engineering,2016

2. MR fluid, foam and elastomer devices;Carlson;Mechatronics,2000

3. State of the art of control schemes for smart systems featuring magneto-rheological materials;Choi;Smart Mater. Struct.,2016

4. Nehl, T., and Deng, F. (2004). Piston Damper Assembly, and Dust Tube Subassembly, Having a Velocity Sensor. (US20040089506A1), U.S. Patent.

5. Dynamic modeling of large-scale magnetorheological damper systems for civil engineering applications;Yang;J. Eng. Mech.,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3