Abstract
Building materials processing with the help of HF waves demonstrates a great number of perspective advantages as compared to traditional heating methods. In order to upgrade the technology of HF wave heating there exist a need to optimize the HF waves sources that enable us to consider some characteristic features of the process to a greater extend. To solve the task of optimizing a HF wave energy source we use the methods of the optimal control theory. The optimization has been carried out based on the gradient method. As a result we have found some optimal functional dependencies that describe the laws strength change of an electrostatic and a high-frequency field. Established managements help considerably enhance the efficiency of the energy exchange. The calculations we have carried out show that the chosen method enables an efficient optimization of a HF wave energy source with different restrictions of the governing function.