Author:
Kukuryk Marcin,Winczek Jerzy
Abstract
The paper presents theoretical and experimental analysis of deformations and microstructural evolutions in the hot cogging process of Ti-6Al-4V alloy. A three–dimensional thermal – plastic coupled finite element model is employed to study the mechanical and thermal interaction between the forging anvils and the workpiece. To explore the distributions of effective strain, effective stress, mean stress and temperature of the specimens have been systematically studied. Attention has been paid to deformation, temperature, stress and strain inside the specimens and these parameters have been used to determine the evolution of the microstructure in deformed samples during hot cogging process. A comparison of theoretical with experimental results shows that the developed model may be used to accurately predict deformations and microstructural parameters.